中考数学必须具备要点建议:解题错误是什么原因
(一)小学习数学的干扰
在初中刚开始,学生学习小学习数学形成的某些认识会妨碍他们学习代数初步常识,使其产生解题错误。
比如,在小学习数学中,解题结果常常是一个确定的数。受此影响,学生在解答下述问题时出现混乱与错误。原题是如此的:礼堂第一排有a个座位,后面每排都比前1排多1个座位,第2排有几个座位?第3排呢?设m为第n排的座位数,那样m是多少?求a=20,n=19时,m的值。学生在解答上述问题时,受结果是确定的数的影响,把用n表示m与求m的值混为一谈,暴露出其考虑过程遭到上述干扰的痕迹。
又如,小学习数学中形成的一些结论都只不过在没学负数的状况下成立的。在小学,学生对数之和不小于其中任何一个加数,即a+ba是坚信不疑的,但,学了负数后,a+b
再有,学生习惯于算术解法解应用题,这会对学生学习代数办法列方程解应用题产生干扰。比如,在求两车相遇时间时,列出的方程为x=360/48+72.由此可以看出学生拘泥于算术解法的痕迹。而初中需要列出48x+72x=360如此的方程,这表明学生对已知数和未知数之间的相等关系的把握程度。
总之,初中开始阶段,学生解题错误是什么原因常可追溯到小学习数学常识对其新学常识的影响。讲清爽学常识的意义、范围、办法与旧有常识的不同,能够帮助克服干扰,降低初始阶段的错误。
(二)初中数学前后常识的干扰
伴随初中常识的展开,初中数学常识本身也会前后相互干扰。
比如,在学有理数的减法时,教师反复强调减去一个数等于加上它的相反数,因而3-7中7前面的符号-是减号给学生留下了深刻的印象。紧接着学习代数和,又要强调把3-7看成正3与负7之和,-又成了负号。学生不禁产生到底要把-看成减号还是负号的困惑。这个困惑不可以非常不错地消除,学生就会产生运算错误。
又如,知道不等式的解集与运用不等式基本性质3是不等式教学的一个难题,学生常常在这里犯了错误误,其缘由就有受等式两边可以乘以或除以任何一个数与方程的解是一个数有关.事实也证明,把不等式的有关内容与等式及方程的相应内容加以比较,使学生理解两者的异同,能够帮助学生学好不等式的内容。
学生在解决单一问题与综合问题时的表现也可以说明这个问题。学生在解答单一问题时,需要提取、运用的常识少,因而遭到常识间的干扰小,产生错误的可能性小;而遇见综合问题,在常识的选取、运用上遭到的干扰大,容易出错。